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    19.1   Psychoneuroimmunology 

 Psychoneuroimmunology (PNI) is a  fi eld in 
which researchers investigate the intersections 
among behavior, the nervous system, and the 
immune system. Its development over the past 
35 years followed the realization that the immune 
system does not function in isolation  [  1,   2  ] . The 
initial focus on biological mechanisms encour-
aged the use of animal models to uncover 
pathways through which the brain and behavior 
affect immune activity. Once biological pathways 
were established, researchers started replicating 
similar results in humans with broad applications 
in areas such as infectious diseases, cardiovascu-
lar disease, autoimmunity, and cancer. Today, the 
transdisciplinary  fi eld of PNI continues to unravel 
the complex connections among behavior, 
immune function, and health. 

 In this chapter, we use a PNI lens to under-
stand and describe the complex in fl uences of 
biology and psychology on in fl ammation. 
In fl ammation is an underlying etiological factor 
in many chronic diseases. A brief description of 
brain–immune communication is  fi rst intro-
duced as background, followed by a summary 
of in fl ammation’s effect on health. The biolog-
ical, psychological, and psychosocial in fl u-
ences on in fl ammation are then discussed, 
followed by a review of in fl ammation and cel-
lular aging.  
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    19.2   Neuroendocrine–Immune 
Communication 

 The two major stress systems include the sympa-
thetic–adrenal–medullary (SAM) axis and the 
hypothalamic–pituitary–adrenal (HPA) axis. 
Both systems in fl uence in fl ammation and affect 
immune cells through adrenergic and glucocorti-
coid receptors; the end products of SAM and 
HPA axes can modulate immune functioning  [  3  ] . 
Of note, neuroimmune communication is not 
limited to these two pathways; however, an 
in-depth review of the bidirectional communica-
tions between the nervous and immune systems 
is beyond the scope of this chapter. There are sev-
eral thorough reviews that address the ways in 
which neuroimmune communications occur and 
the observed effects  [  4–  6  ] . 

 The SAM axis connects the brain directly to 
the adrenal medulla via sympathetic innervations. 
Upon stimulation, the adrenal medulla releases 
catecholamines, epinephrine and norepinephrine. 
Although catecholamines have short half-lives 
and are metabolized quickly, they can regulate 
many facets of the immune system  [  4  ] . Therefore, 
chronic sympathetic activation can lead to 
immune dysregulation. 

 Epinephrine increases interleukin (IL)-6 and 
tumor necrosis factor-alpha (TNF- a ) production 
during stress  [  6  ] . In addition, norepinephrine pro-
motes nuclear factor-kappa B (NF- k B) activation 
 [  7  ] . NF- k B is a transcription factor that regulates 
the gene expression of several proin fl ammatory 
mediators, such as IL-6 and IL-8  [  8,   9  ] . NF- k B 
activation increases the gene expression of 
in fl ammatory mediators, which in turn enhances 
in fl ammation  [  7  ] . Therefore, epinephrine and 
norepinephrine can induce proin fl ammatory 
cytokine production. 

 Although inherently slower than the SAM 
axis, the HPA axis provides a more sustained 
response following activation. It begins with the 
release of corticotropin-releasing hormone (CRH) 
from the hypothalamus. CRH triggers the release 
of adrenocorticotropic hormone (ACTH) from 
the anterior pituitary into the blood stream. In 

turn, ACTH stimulates the adrenal cortex, its 
target organ, to produce cortisol, a glucocorticoid 
 [  10  ] . A negative feedback loop regulates HPA 
axis activation. Cortisol binds to glucocorticoid 
receptors in the hippocampus which inhibit the 
production of CRH and ACTH from the hypo-
thalamus and anterior pituitary, respectively  [  11  ] . 
Other neuroendocrine hormones in fl uence the 
HPA axis including androgens, estrogens, and 
posterior pituitary hormones, vasopressin and 
oxytocin  [  12–  14  ] . 

 Cortisol can inhibit immune cell activity by 
binding to glucocorticoid receptors; this process 
inhibits activation and release of proin fl am-
matory cytokines  [  15,   16  ] . However, chronic 
stress can lead to hippocampal damage and HPA 
axis dysregulation resulting in increased cortisol 
production  [  17  ] . Chronically elevated cortisol 
can induce glucocorticoid insensitivity where 
immune cells downregulate the expression of 
glucocorticoid receptors  [  18,   19  ] . As a result, 
in fl ammation is increased due to unregulated 
immune cells producing proin fl ammatory cytok-
ines  [  20  ] . 

 Neuroendocrine–immune communication is 
not unidirectional. The immune system commu-
nicates with the brain via cytokines. For example, 
IL-1 receptors are located throughout the brain, 
especially in the hypothalamus. In turn, IL-1 can 
stimulate CRH secretion from the hypothalamus, 
leading to increased HPA axis activity  [  21  ] . 
Peripheral cytokines induce sickness behavior, 
behavioral changes that are associated with 
fever, decreased energy, decreased appetite, and 
changes in sleep  [  22  ] . Proin fl ammatory cytok-
ines can access the brain through a variety of 
pathways including the leaky regions in the 
blood–brain barrier (e.g., circumventricular 
organs) and cytokine-speci fi c transport mole-
cules expressed on brain endothelium  [  5  ] . In 
addition, the vagus nerve detects cytokine levels 
in the periphery and relays this information to 
the brain via afferent  fi bers  [  23,   24  ] . This bidi-
rectional communication not only allows an inte-
grated response to occur, but also increases the 
opportunity for dysregulation when one system 
is disrupted (Fig.  19.1 ).  
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    19.3   Health Consequences 
of In fl ammation 

 In fl ammation is an immune response to infection 
or injury that aids in the removal of foreign patho-
gens and promotes wound healing. Acute 
in fl ammation is bene fi cial; however, chronic low-
grade in fl ammation is harmful. Chronically high 
levels of in fl ammation are found in a number of 
age-related diseases including cardiovascular 
disease and cancer  [  25–  28  ] . 

 In fl ammation can be measured by assessing 
serum or plasma levels of acute-phase proteins 
and proin fl ammatory cytokines. C-reactive 
protein (CRP) is the most commonly studied 
acute-phase protein; acute infections and tissue 
damage increase IL-6 levels that in turn induce 

liver production of CRP  [  29  ] . CRP can bind to 
foreign or damaged cells and lead to cell destruc-
tion. Many cells throughout the body including 
immune cells, adipocytes (fat cells), and dam-
aged cells, produce proin fl ammatory cytokines 
such as IL-6 and TNF- a  that then recruit and 
stimulate additional immune cells to clear and 
repair tissue. In addition, IL-6, TNF- a , and IL-1 
levels follow a diurnal rhythm such that peak lev-
els occur during the early night and reach a nadir 
in the morning  [  30,   31  ] . CRP, however, does not 
appear to vary across the day  [  32  ] .  

 Outside of acute infection and tissue injury, 
CRP is considered clinically relevant as a 
nonspeci fi c biomarker of in fl ammation; minor 
elevations have been linked to cardiovascular dis-
ease risk  [  33  ] . For example, individuals with CRP 

  Fig. 19.1    Neuroendocrine–
immune bidirectional 
communication. 
Hypothalamic-pituitary-
adrenal (HPA) axis and the 
sympathetic nervous system 
in fl uence the immune cells 
through glucocorticoid and 
adrenergic receptors. 
Immune cells can 
communicate with the brain 
via peripheral cytokine 
levels surveyed by the 
circumventricular organs 
and the afferent vagus 
nerve.  CRH  corticotropin-
releasing hormone,  ACTH  
adrenocorticotropic 
hormone,  NK  natural killer, 
 IL  interleukin,  CVO  
circumventricular organs       
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greater than 3 mg/L are at higher risk for devel-
oping cardiovascular disease. Unlike CRP, there 
are no clinically relevant standards for 
proin fl ammatory cytokines. Therefore, a typical 
research strategy is to compare individuals with 
higher proin fl ammatory cytokines to those indi-
viduals with lower levels or unhealthy patient 
populations with healthy controls. In addition, 
researchers may also investigate within-person 
changes in proin fl ammatory cytokine levels fol-
lowing a study manipulation such as an interven-
tion or laboratory stressor. 

 Individuals who have higher levels of 
in fl ammation are at greater risk for many diseases 
including cancer, cardiovascular disease, type 2 
diabetes, Alzheimer’s disease, osteoporosis, 
rheumatoid arthritis, and periodontal disease. 
Elevated in fl ammation is associated with greater 
all-cause mortality risk  [  34  ] . We brie fl y review 
how in fl ammation contributes to cardiovascular 
disease, cancer, and type 2 diabetes, three dis-
eases that account for the majority of deaths in 
developed countries  [  35  ] . 

 In the case of cardiovascular disease, 
proin fl ammatory cytokines facilitate early athero-
genesis and clinical vascular events  [  36  ] . 
In fl ammation contributes to atherosclerosis by 
reducing vascular endothelial cells’ capacity to 
resist leukocyte (white blood cell) adhesion. 
When leukocytes adhere to vascular endothelial 
cells, they proliferate, and enhance cytokine pro-
duction. Elevated in fl ammation has been impli-
cated in the onset of clinical vascular events 
because they weaken  fi brous caps. Weak  fi brous 
caps are more likely to rupture leading to a heart 
attack or stroke  [  37  ] . 

 In fl ammation is also linked to cancer incidence 
and progression  [  38  ] . Chronic in fl ammation is a 
contributing factor in at least 15% of all cancers and 
also in fl uences tumor survival, proliferation, inva-
sion, angiogenesis, and metastases  [  38–  40  ] . When 
proin fl ammatory cytokines enter tumor cells, they 
promote uncontrolled growth and subsequent 
metastasis. Furthermore, when macrophages are 
activated during the in fl ammatory response, they 
release many different cancer-promoting messen-
gers including growth and angiogenic factors, pro-
teases, and reactive oxygen species  [  40  ] . 

 Individuals with type 2 diabetes are insulin-
resistant, which means they either cannot produce 
enough insulin or the body cannot use the insulin 
adequately. In fl ammatory cytokines can mediate 
insulin resistance. For example, elevated 
in fl ammation impairs blood glucose control by 
suppressing insulin signal transduction  [  41,   42  ] . 
Furthermore, TNF- a  is the major proin fl ammatory 
cytokine implicated in this process  [  43  ] . 

 In sum, elevated in fl ammation has been linked 
to disease progression. Yet, it is unknown whether 
higher cytokine levels cause the disease, or if the 
disease results in greater proin fl ammatory 
cytokine production. However, we do know sev-
eral factors that in fl uence in fl ammation. The fol-
lowing sections describe how biology and 
behavior affect proin fl ammatory mediators.  

    19.4   Biological In fl uences 
on In fl ammation 

    19.4.1   Age 

 Proin fl ammatory cytokine levels rise with age and 
have known ties to a number of age-related ill-
nesses  [  27,   44  ] . Circulating IL-6, soluble IL-6 
receptor (sIL-6r), TNF- a , soluble TNF receptor II 
(sTNFR-II), and IL-1 receptor antagonist (IL-1ra) 
increase with age  [  44–  47  ] . A recent review 
describes the relationship between age and 
in fl ammation as linear, but evidence has not estab-
lished the age when the relationship can  fi rst be 
detected  [  48  ] . For example, in studies with middle-
age and older adults ( ³ 40 years old), in fl ammation 
increases with age  [  45,   46,   49,   50  ] . However, 
among young adults ( £ 30 years old), the linear 
relationship between in fl ammation and age does 
not appear consistently  [  46,   49  ] , suggesting that 
young adults’ health behaviors may have more 
salient in fl uences on in fl ammation than age. 

 Epidemiological studies in healthy older adults 
indicate a twofold higher risk of all-cause mortal-
ity in those who had IL-6 levels in the highest 
quartile compared to those in the lowest IL-6 
quartile, independent of known health risks  [  34  ] . 
When compared to those in the lowest tertile, 
elderly individuals whose IL-6 levels were within 
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the highest tertile range were nearly 2 times more 
likely to develop mobility-related disability, and 
1.5 times more likely to develop additional disabil-
ity related to activities of daily living  [  51  ] . 

 Interleukin-6 promotes CRP production by the 
liver  [  52  ] . In a group of healthy participants, older 
adults [75.4 ± 6.8 years (±SD)] had higher CRP 
than young adults [31.6 ± 7.7 years (±SD)]  [  53  ] . 
In several large population-based studies, CRP 
increased as men and women aged, even after 
controlling for possible pre-existing conditions 
and sub-acute illnesses such as cardiovascular risk 
factors and disease  [  46,   49,   54  ] . High CRP levels 
are clinically signi fi cant; particularly when pre-
dicting cardiovascular disease risk  [  29,   55,   56  ] . In 
a recent meta-analysis, individuals with CRP 
levels >3.0 mg/L were 1.54 times more likely to 
experience a cardiovascular event than those with 
<1.0 mg/L CRP  [  57  ] .  

    19.4.2   Obesity 

 Obesity is characterized by elevated circulating 
proin fl ammatory cytokines; hence, obese indi-
viduals experience a state of chronic in fl ammation. 
In epidemiological studies, obese individuals had 
higher CRP compared to those not obese, even 
after controlling for negative health behaviors 
and disease status  [  58  ] . Similarly, obese individu-
als had higher CRP per unit increase in weight, 
body mass index (BMI), and waist circumference 
compared to normal weight individuals over a 
10-year span  [  59  ] . Circulating IL-6, as well as 
IL-6 produced from abdominal adipose tissue, 
increases with adiposity  [  60  ] . In addition, IL-6 
released from abdominal adipose tissue accounts 
for an estimated 30% of systemic IL-6 in healthy, 
overweight subjects  [  60  ] . Among premenopausal 
women, obese women had higher IL-6 levels 
before and after public speaking stress compared 
to non-obese women  [  61  ] . 

 Obesity-induced in fl ammation has been linked 
to the development of insulin resistance. Increased 
obesity was associated with greater CRP, IL-6, 
and TNF- a . Higher CRP was also related to 
insulin resistance, suggesting that elevated 
in fl ammation may underlie the progression of 

metabolic syndromes including type 2 diabetes  [  62  ] . 
In participants with obesity-related insulin resis-
tance, abdominal adipose tissue expression of 
TNF- a  and plasma IL-6 were elevated compared 
to insulin-sensitive participants  [  63  ] . Interestingly, 
the two groups were matched for BMI, suggest-
ing that being insulin-resistant elevates 
in fl ammation beyond that observed in obese 
individuals. 

 Diseases with an in fl ammatory component 
can be exacerbated by insulin resistance. For 
example, hepatitis-C-infected patients with 
comorbid type 2 diabetes had higher TNF- a  
levels than patients without type 2 diabetes  [  64  ] . 
In addition, TNF- a  inhibitors signi fi cantly 
improved insulin sensitivity in patients with 
rheumatoid arthritis  [  65  ] . The infusion of 
TNF- a  lowered insulin-mediated glucose 
uptake and induced IL-18 gene expression in 
human muscle tissue  [  66  ] , which demonstrates 
the relationship between these two in fl ammatory 
mediators and their effects on insulin 
resistance. 

 Weight loss lowers in fl ammation. For exam-
ple, a diet-induced weight loss intervention 
reduced circulating levels of CRP, IL-6, and 
sTNFR-1 in a sample of older adults, regardless 
of physical activity, suggesting that weight reduc-
tion is independently associated with reduced 
proin fl ammatory cytokines  [  67  ] . Serum TNF- a  
levels in obese individuals fell ~25% after an 
average weight loss of 12 kg  [  68  ] . Two years after 
a diet and exercise intervention in obese women, 
the treatment group had lower IL-6, IL-18, and 
CRP levels related to weight loss than obese 
women in the control group  [  69  ] . In another 
study, weight loss reduced plasma IL-18 and 
increased insulin sensitivity  [  70  ] . 

 Measures of relative fat mass composition 
may partially account for the relationship 
between physical activity and in fl ammation. 
For instance, more physical activity resulted in 
lower IL-6, CRP, and sTNFR than less physical 
activity; however, when adjustments were 
made for BMI and leptin levels, physical activ-
ity no longer was related to decreased 
in fl ammation  [  71  ] . During a 3-year follow-up 
period, increased low-grade in fl ammation was 
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associated with greater adiposity, but not phys-
ical  fi tness  [  72  ] . Therefore, although physical 
activity is associated with lower in fl ammation, 
this relationship may result from less obesity 
in physically active people.  

    19.4.3   Sex 

 Sexual dimorphic immune responses can be 
readily observed in human populations. For 
example, women are more like to suffer from 
an autoimmune disease; however, men are dis-
proportionately affected by Parkinson’s disease 
and early-onset cardiovascular disease  [  73,   74  ] . 
Gonadal hormones (e.g., estrogen, progester-
one, and testosterone) may partially account 
for the differences observed between males 
and females. Androgen and estrogen receptors 
are present on immature immune cells in the 
thymus and bone marrow  [  75–  77  ] . However, 
sex differences in gonadal hormones do not 
fully account for disparities in circulating 
in fl ammatory markers between males and 
females. 

 Levels of most in fl ammatory markers do not 
differ consistently between sexes, although 
CRP levels are one exception. In large popula-
tion-based studies, females have higher CRP 
levels than males  [  78–  80  ] . During the follicu-
lar phase of the menstrual cycle, women had 
lower levels of CRP compared to those in the 
luteal phase  [  81  ] . Post-menopausal women 
have higher CRP than premenopausal women  [  82  ] . 
In addition, women using oral contraceptives 
or hormone replacement therapy (HRT) have 
increased CRP levels compared to age-matched 
women not taking hormones  [  49,   83–  87  ] . 

 Unlike the reliable CRP difference, 
proin fl ammatory cytokines such as IL-6 and 
TNF- a  are not always different between the 
two sexes  [  88,   89  ] . It remains unclear whether 
menstrual cycle phase and menopausal status 
impact proin fl ammatory cytokines. The follic-
ular phase may be associated with higher IL-6 
levels compared to the luteal phase  [  90  ] . 
However, several studies suggest that 
in fl ammation is greater during the luteal phase 

compared to the follicular phase  [  91–  93  ] . 
Neither menstrual cycle phase nor oral contra-
ceptive use affects proin fl ammatory cytokine 
levels  [  87,   94–  96  ] . The use of HRT inconsis-
tently affects proin fl ammatory cytokines, with 
studies showing decreases, increases, and no 
change  [  83,   84,   97,   98  ] . These discrepant 
 fi ndings may be due to relatively small sample 
size; the majority of the proin fl ammatory 
cytokine studies include 68 women or less.   

    19.5   Psychological In fl uences 
on In fl ammation 

    19.5.1   Depression 

 Patients with in fl ammatory-related diseases 
including cardiovascular disease and cancer 
have higher rates of depression compared to 
healthy individuals  [  99,   100  ] . Both syndromal 
depression and depressive symptoms are associ-
ated with heightened levels of proin fl ammatory 
mediators including IL-1, IL-6, and CRP  [  101–  105  ] . 
Additionally, depression severity and 
in fl ammation appear to have a dose–response 
relationship; as depressive symptoms worsen, 
in fl ammatory markers increase  [  104,   106  ] . 
While these  fi ndings demonstrate an association 
between depression and circulating levels of 
proin fl ammatory cytokines, it is important to 
consider factors that in fl uence in fl ammation and 
covary with depression including antidepressant 
use, sex, BMI, and comorbid symptoms of anxi-
ety  [  48,   107  ] . 

 Not only do depressed people have higher 
in fl ammatory levels, they also have a greater 
in fl ammatory response to stress. For example, 
compared to nondepressed males, those with 
major depression show greater IL-6 and NF- k B 
activity in response to acute psychosocial stress  [  108  ] . 
Clinically depressed individuals also display 
decreased sensitivity to the anti-in fl ammatory 
properties of glucocorticoids, resulting in greater 
production of IL-6 and TNF- a  compared to their 
nondepressed counterparts  [  109,   110  ] . Thus, 
excessive NF- k B activity and decreased respon-
siveness to glucocorticoids may enhance and 
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sustain the production of proin fl ammatory cytok-
ines in individuals with depression. 

 Growing evidence suggests that the rela-
tionship between depression and in fl ammation 
is bidirectional. Administration of interferon-
alpha and other cytokine inducers produces 
depression-like symptoms including low mood, 
fatigue, and psychomotor slowing in otherwise 
healthy volunteers  [  111,   112  ] . Cytokines 
appear to in fl uence the production and metabo-
lism of mood-relevant neurotransmitters such as 
serotonin, dopamine, and norepinephrine  [  113  ] . 
Moreover, clinically depressed individuals who 
receive anti-in fl ammatory medication in addi-
tion to antidepressants show greater symptom-
atic reduction than those who receive a 
combination of antidepressant and placebo 
 [  114,   115  ] . Elevated in fl ammation affects not 
only physical health, but also emotional well-
being, including anxiety.  

    19.5.2   Anxiety 

 Laboratory-based and cross-sectional studies in 
healthy and patient populations have been used to 
investigate the relationship between anxiety and 
in fl ammation. In the laboratory setting, stress-
induced increases in anxiety and anger enhanced 
IL-6 production following stress  [  116  ] . These 
associations varied by sex; for women, anxiety 
was more strongly associated with IL-6 responses, 
while anger in men was related to IL-6 produc-
tion  [  116  ] . Administration of endotoxin, a sub-
stance used to mimic an actual infection, increased 
anxiety as well as circulating levels of TNF- a , 
IL-6, and IL-1ra  [  111  ] . 

 Cross-sectional studies indicate that anxiety 
can in fl uence in fl ammation outside the laboratory. 
During an examination, anxious medical students 
produced more proin fl ammatory interferon-
gamma (IFN- g ) and less anti-in fl ammatory IL-10 
and IL-4 compared to non-anxious medical stu-
dents  [  117  ] . More anxious adults had higher CRP, 
IL-6, and TNF- a  than less anxious ones  [  118  ] . 

 Anxiety may exacerbate in fl ammatory 
responses in people with allergies. In patients 
with allergic rhinitis (AR), anxiety enhanced 

the effects of stress on late-phase responses 
assessed 24-h after a skin prick test (SPT), and 
was associated with higher IL-6 production 
 [  119  ] . Therefore, continued in fl ammation that 
occurs during late-phase allergic responses may 
“prime” hyperresponsiveness to irritant triggers 
and other allergens, especially in anxious AR 
patients. In addition, anxious AR patients’ lym-
phocytes had greater Concanavalin A (ConA)- 
stimulated IL-6 production compared to those 
who were not anxious  [  119  ] . 

 Chronically ill individuals may be especially 
susceptible to anxiety’s effect on in fl ammation. 
For instance, leukocytes from anxious hemodial-
ysis (HD) patients produced signi fi cantly higher 
in vitro levels of IL-6 compared to less anxious 
HD patients  [  120  ] . This anxiety-related increase 
within the HD patient group was over and above 
the already observed higher in fl ammation in the 
HD patients compared to healthy controls  [  120  ] , 
suggesting that anxiety may have an additive 
effect on in fl ammation in patient populations.   

    19.6   Psychosocial In fl uences 
on In fl ammation 

    19.6.1   Socioeconomic Status 

 Epidemiological data demonstrate consistent and 
striking effects of socioeconomic status (SES) on 
health outcomes  [  121,   122  ] . Measures of SES 
often include income, education, and occupational 
prestige as the three main components. Lower 
SES individuals have higher rates of all-cause 
mortality and a lower life expectancy  [  123–  125  ] . 
In particular, one estimate indicates that those 
with a lower SES have a lifespan 4.5 years shorter 
than their higher SES counterparts  [  126  ] . 
Furthermore, health disparities increase with each 
step down the SES ladder  [  122  ] . 

 An individual’s SES can shape their life 
course and lead to a number of lifestyle choices, 
many of which may contribute to the observed 
association between SES and health. For 
instance, individuals with low SES are more 
likely to engage in behaviors such as smoking, 
excessive alcohol use, reduced physical activity, 
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and they are more likely to experience stress and 
depression, all of which can negatively impact 
health  [  127  ] . Despite these associations, the rela-
tionship between low SES and mortality persists 
even when these factors are statistically con-
trolled  [  128  ] . 

 Heightened in fl ammation may provide one 
link between low SES and poor health outcomes. 
In fact, a number of acute and chronic medical 
conditions are associated with both elevated lev-
els of in fl ammatory markers and low SES. 
Compared to higher SES individuals, lower SES 
individuals have higher IL-6, TNF- a , and CRP 
 [  55,   129–  132  ] . The individual components of 
most composite SES measures, such as income 
and education, show similar negative associations 
with proin fl ammatory cytokines  [  133,   134  ] . 
While informative, these associations do not 
explain the mechanisms through which low SES 
promotes in fl ammation and, by proxy, poor health 
outcomes. 

 Different in fl ammatory responses to psycho-
logical stress may partly account for health 
disparities between SES groups. Compared to 
high SES individuals, lower SES individuals 
show greater increases in IL-6 and CRP that per-
sist longer in response to acute mental stress 
 [  135,   136  ] . Thus, lower SES individuals tend to 
have maladaptive responses to stress, an attribute 
which may play a role in maintaining higher lev-
els of in fl ammation. While the pathways through 
which low SES individuals develop negative 
health outcomes remains unclear, increased 
in fl ammation represents an attractive possibility.  

    19.6.2   Social Support 

 Close relationships have clear ties to better health 
and reduced in fl ammation may account for these 
associations. Social support refers to the degree 
that one believes that support would be available 
if and when it is needed  [  137  ] . In one study, older 
women who had more satisfying interpersonal 
relationships had lower IL-6 compared to those 
who had less satisfying relationships  [  138  ] . In 
another study, women with ovarian cancer who 
reported greater social support had lower circu-

lating IL-6 levels compared to women who 
reported less social support  [  139  ] . Furthermore, 
gynecologic cancer survivors who sought more 
support at diagnosis had lower circulating IL-6 
one year later compared to those who sought less 
support  [  140  ] .  

    19.6.3   Marriage 

 Married individuals’ mortality rates are lower 
than those of their unmarried counterparts  [  141  ] . 
In fl ammation may be one possible mechanism 
for these  fi ndings. In a population-based study of 
community-dwelling older adults, being married 
was associated with reduced CRP for both sexes; 
these effects were particularly pronounced in 
men  [  142  ] . The absolute magnitude of the risk 
reduction for married men was equivalent to 
being a nonsmoker, having normal blood pres-
sure, and having a healthy BMI  [  142  ] . 

 While marriage typically has positive health 
bene fi ts, marital quality has important health 
implications  [  143  ] . Marital interaction studies 
demonstrate the relationship between marital 
quality and immune function. Hostile marital 
interactions have particularly important negative 
physiological consequences. Both younger and 
older couples who were more hostile to their 
spouse during marital problem discussions pro-
duced more epinephrine, norepinephrine, and 
ACTH than their less hostile counterparts  [  144  ] . 
In another study in which couples engaged in a 
supportive discussion and a marital problem dis-
cussion across two separate sessions, those cou-
ples who were more hostile produced more IL-6 
after the con fl ict discussion than the supportive 
discussion (113 vs. 45%). In contrast, less hostile 
couples’ IL-6 production was similar after both 
discussions (70 vs. 65%)  [  88  ] . 

 Cognitive engagement (the use of cognitive 
processing words) during a marital disagreement 
is associated with a dampened in fl ammatory 
response. More cognitively engaged individuals 
produced less IL-6 and TNF- a  in the following 
24 h after a disagreement compared to less cogni-
tively engaged individuals  [  145  ] . In addition, those 
who were more cognitively engaged had lower 
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absolute levels of IL-6 and TNF- a  than those who 
were less cognitively engaged at baseline  [  145  ] . 

 Marital stress may be particularly detrimental 
if combined with other known health risk factors, 
such as BMI or sagittal abdominal diameter. 
Women with larger waists showed a stronger pos-
itive association between marital stress and CRP 
than women with smaller waists  [  146  ] . Given that 
having higher levels of CRP raises cardiovascular 
disease risk  [  147  ] , the combination of marital 
stress and having a large waist may be particu-
larly prognostic for heart problems. See Table  19.1  
for a summary of characteristics and health 
behaviors that affect in fl ammation.   

    19.7   Health Behaviors 
and In fl ammation 

    19.7.1   Smoking 

 Smoking tobacco has been linked to the develop-
ment of many chronic diseases, such as heart 
disease, stroke, diabetes, cancer, and chronic air-
way in fl ammation such as chronic obstructive 
pulmonary disease and continues to be the most 
preventable cause of illness and death in the 
United States  [  148  ] . On average, adults who 
smoke cigarettes die 14 years earlier than non-
smokers  [  149  ] . Smokers’ greater in fl ammatory 

state may underlie the increased risk of develop-
ing chronic diseases and premature death  [  150  ] . 

 Smoking appears to elevate CRP  [  151–  153  ] . 
In large-scale, population-based studies across 
several countries, male and female smokers had 
higher CRP than nonsmokers  [  79,   154–  157  ] . 
CRP levels increase with smoking exposure in a 
dose-dependent manner  [  158,   159  ] . Furthermore, 
CRP remained higher in former smokers even 
10–20 years following smoking cessation com-
pared to those who have never smoked  [  154,   160,   161  ] . 
Lifetime smoking exposure elevates CRP levels 
in both smokers and former smokers  [  152,   162  ] ; 
speci fi cally, greater smoking exposure is associ-
ated with higher CRP levels in smokers and 
slower CRP decline after smoking cessation. 

 Smoking also enhances IL-6 and TNF- a  pro-
duction. Male and female smokers had substan-
tially higher IL-6 compared to former smokers 
and nonsmokers  [  155,   163–  165  ] . Similar to the 
relationship between CRP and smoking expo-
sure, the greater number of cigarettes smoked 
per day, the higher circulating IL-6 in current 
smokers  [  164  ] . In former smokers, IL-6 remained 
elevated compared to nonsmokers and decreased 
signi fi cantly as abstinence increased  [  164  ] . Male 
smokers had higher TNF- a  than nonsmokers; 
among smokers, greater tobacco exposure (i.e., 
pack years) was associated with more TNF- a  
 [  166  ] . An additional study suggested that 

   Table 19.1    Summary of key characteristics and health behaviors that in fl uence in fl ammation   

 Individual characteristics/health behaviors  Effects on in fl ammation 

 Aging  ↑ IL-6, TNF- a , CRP  [  44–  47,   49,   50,   53,   54  ]  
 Obesity/higher BMI  ↑ CRP, IL-6, TNF- a   [  49–  63,   71  ]  
 Weight loss  ↓ CRP, IL-6, IL-18, TNF- a   [  64–  67,   69  ]  
 Sex  CRP: females>males  [  78–  80  ]  
 Depression  ↑ IL-1, IL-6, CRP  [  101–  105,   108–  110  ]  
 Anxiety  ↑ TNF- a , IL-6, CRP  [  116–  120  ]  
 Low social economic status  ↑ TNF- a , IL-6, CRP  [  55,   129–  132  ]  
 Low social support/poor martial quality  ↑ IL-6, CRP  [  88,   138–  140,   142  ]  
 Smoking  ↑ TNF- a , IL-6, IL-8, CRP  [  79,   151–  167  ]  
 Exercise  Immediate: ↑ IL-6, IL-8, IL-15  [  168–  172  ]  

 Long term: ↓ CRP, IL-1, IL-6, IFN- g   [  174–  178,   180,   181  ]  
 ↑ IL-10  [  176,   177  ]  

 Poor diet  ↑ CRP, IL-1, TNF- a , IL-6  [  190–  197  ]  
 Poor sleep  ↑ IL-6, TNF- a , and CRP  [  211–  215  ]  

 ↓ IL-10  [  215  ]  
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smokers may also have higher IL-8 and mono-
cyte chemotactic protein (MCP)-1 than non-
smokers  [  167  ] .   

    19.7.2   Exercise 

 Exercise increases proin fl ammatory cytokine 
production  [  168  ] . Acute IL-6, IL-8, and IL-15 
increases during and following exercise have 
been consistently demonstrated  [  169–  172  ] . In the 
laboratory, endotoxin was administered to young 
healthy males during rest, following exhaustive 
exercise, or after an injection of IL-6  [  173  ] . In 
response to the endotoxin, the exercise and IL-6 
groups’ plasma TNF- a  rise was attenuated com-
pared to the rest group  [  173  ] . These results sug-
gest that exercise-induced elevations of IL-6 may 
have anti-in fl ammatory effects. 

 Many studies have shown that increased phys-
ical activity lowers in fl ammation. In population-
based studies, more physically active adults had 
lower serum CRP levels, even when controlling 
for possible demographic confounds and health 
behaviors  [  174,   175  ] . Among older men, higher 
 fi tness levels were associated with lower IL-6 and 
higher IL-10  [  176  ] . 

 Longitudinal studies also demonstrate the 
anti-in fl ammatory bene fi ts of exercise. In a 
12-week study, coronary heart disease patients 
who underwent an intense aerobic training pro-
gram had lower IL-6, IL-1, and IFN- g  levels and 
higher levels of the anti-in fl ammatory cytokine 
IL-10 compared to their baseline levels  [  177  ] . 
Furthermore, at the end of the study, CRP levels 
had improved signi fi cantly in all participants; 
among those at the highest risk for developing 
type 2 diabetes, CRP was 46% lower  [  177  ] . 

 CRP levels dropped following a 2-month exer-
cise training program in women  [  178  ] . However, 
women in the moderate weight-reduction quartile 
showed the most signi fi cant CRP decreases, even 
over those in the largest weight-reduction quartile. 
These data suggest that women who had the 
greatest weight loss may have been the result of 
overtraining, which can lead to increased 
in fl ammation  [  178  ] . 

 Patients undergoing an exercise and pharma-
cological (i.e., pravastatin) intervention trial had 
similar reductions in MCP-1, regardless of exer-
cise assignment  [  179  ] . However, the combination 
group’s IL-8 levels decreased signi fi cantly more 
than the drug use only group  [  179  ] , suggesting 
that exercise provided additional anti-
in fl ammatory bene fi ts beyond the pharmacologi-
cal intervention. 

 Yoga practice also may reduce in fl ammation. 
For example, yoga reduced IL-6 and CRP levels 
in patients with chronic heart failure compared to 
pre-yoga baseline levels  [  180  ] . In a study of 
healthy participants, expert yoga practitioners 
had 41% lower serum IL-6 levels compared to 
novice yoga practitioners  [  181  ] . In addition, the 
novice group was 4.75 times as likely to have 
detectable CRP levels compared to the expert 
group. Following an acute stressor, stimulated 
IL-6 production in the expert group was lower 
compared to the novice group, suggesting that 
extended yoga practice may buffer stress-induced 
proin fl ammatory cytokine elevations  [  181  ] .  

    19.7.3   Nutrition 

 Large-scale epidemiological studies demonstrate 
relationships among diet, health, and in fl ammation. 
Diets that are high in re fi ned grains, processed 
meat, sugar, saturated and  trans -fatty acids, and 
low in fruits, vegetables, and whole grains promote 
in fl ammation and increase the risk for cardiovas-
cular disease and type 2 diabetes  [  182–  185  ] . Diets 
are becoming increasingly less healthy, therefore it 
is important to understand the ways dietary com-
ponents can elevate in fl ammation. 

 The intake of certain macronutrients may pro-
duce oxidative stress and lead to in fl ammation. 
Oxidative stress results from the metabolism of 
food and can promote in fl ammation through acti-
vation of the NF- k B pathway  [  186  ] . In particular, 
ingestion of glucose is associated with greater 
oxidant production and increased NF- k B activity 
 [  187,   188  ] ; intravenous administration of glucose 
raises circulating levels of IL-6 and TNF- a   [  189,   190  ] . 
Moreover, metabolism of high-fat meals begets 
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increased levels of glucose and triglycerides that 
can enhance oxidative stress and promote increases 
in IL-6 and CRP  [  191  ] . In contrast, higher fruit 
and vegetable intake is associated with lower 
oxidative stress and in fl ammation, which may 
counteract the proin fl ammatory responses to high 
saturated fatty meals  [  190,   192  ] . 

 Some dietary components are the molecular 
precursors of proin fl ammatory cytokines. For 
instance, the omega-6 ( n −6) polyunsaturated 
fatty acid (PUFA), arachidonic acid (AA), found 
in re fi ned vegetable oils, such as corn, sun fl ower, 
and saf fl ower, is a major substrate in the synthe-
sis of eicosanoids, molecules that help regulate 
the intensity and duration of the in fl ammatory 
response  [  193  ] . Overconsumption of  n −6 PUFAs 
increases the production of IL-1, TNF- a , and 
IL-6  [  194,   195  ] . In contrast, the omega-3 ( n −3) 
PUFAs found in  fi sh,  fi sh oil, and  fl ax seed 
decrease the production of in fl ammatory eico-
sanoids and cytokines  [  193,   195  ] . Two key  n −3 
PUFAs, eicosapentaenoic acid (EPA) and doco-
sahexanoic acid (DHA), can decrease NF- k B 
activity and TNF- a  transcription in response to 
endotoxin exposure  [  196,   197  ] .  

    19.7.4   Sleep 

 Sleep is essential for good health. Short sleep 
duration (<7 h/night), poor sleep quality, and 
extended sleep latency are associated with higher 
risk for all-cause mortality  [  198–  200  ] . Sleep dis-
ruptions also play a role in in fl ammatory-related 
diseases and conditions. For example, disrupted 
sleep is thought to advance the onset of type 2 
diabetes  [  201  ]  and is a prominent feature of major 
depressive disorder  [  202  ] . 

 The relationship between sleep and 
proin fl ammatory cytokines is complex and bidi-
rectional. Circulating levels of IL-6, TNF- a , and 
IL-1 exhibit a diurnal rhythmicity such that peak 
levels occur during the early night and reach a 
nadir in the morning  [  30,   31  ] . Cortisol and growth 
hormone also exhibit a circadian rhythm, sug-
gesting that the effect of sleep on the immune 
system may be mediated in part through changes 
in hormones  [  203  ] . Thus, cytokine levels are 

linked to the onset of sleep. Although it is unclear 
why these variations in cytokine levels occur with 
the onset of sleep, nonrapid eye movement 
(NREM) sleep may serve to reallocate energy 
resources from wakefulness activities to immune 
responses, which combat latent infections  [  204  ] . 

 Consistent with this idea, healthy volunteers 
injected with endotoxin show increases in the 
amount and intensity of NREM sleep  [  205,   206  ] . 
Additionally, cytokines themselves produce 
alterations in normal sleep functions. For exam-
ple, the administration of IL-1, TNF- a , and IL-6 
produces increases in NREM sleep and decreases 
in rapid-eye movement (REM) sleep for both ani-
mals and humans  [  207,   208  ] . Taken together, 
these  fi ndings suggest that cytokines are not only 
in fl uenced by sleep but also actively regulate 
sleep activities. 

 Disruptions of sleep and sleep disorders may 
affect health through elevations of proin fl ammatory 
cytokines. As few as 4 h of sleep loss results in 
greater NF- k B activation and higher morning 
levels of IL-6 and TNF- a  compared to a night of 
uninterrupted sleep  [  209,   210  ] . Similarly, exten-
sive total sleep deprivation (e.g., staying awake 
for 88 or more consecutive hours) elevates IL-6 
and CRP  [  211,   212  ] . 

 The immunomodulatory effects of chronic 
sleep loss are observed in patients with obstructive 
sleep apnea (OSA). Patients with OSA exhibit 
higher nighttime levels of plasma TNF- a  and IL-6, 
which increase after each nighttime episode of 
OSA, and lower levels of the anti-in fl ammatory 
marker, IL-10, compared to control patients  [  213  ] . 
This activation of the in fl ammatory response dur-
ing sleep may partially account for the elevated 
levels of CRP and increased risk for cardiovascu-
lar disease observed in patients with OSA  [  214  ] .  

    19.7.5   In fl ammation and Cellular Aging 

 Burgeoning data suggest that psychological 
stress accelerates the cellular aging of the 
immune system  [  215–  219  ] . A telomere is a group 
of nucleoprotein complexes that cap chromo-
somes to protect and stabilize their integrity 
across the lifespan  [  220  ] . Telomere length is a 
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proxy measure of the biological age of a cell. 
Shorter telomeres limit the amount of cellular 
replication, which indicates how close the cell is 
to death  [  220,   221  ] . Young women who were 
more stressed had shorter telomeres compared to 
those who were less stressed  [  215,   219  ] . Dementia 
caregiving, a chronic stressor, in older adults was 
also associated with shorter telomeres and higher 
TNF- a  production  [  218  ] . Thus, it appears that 
stress contributes to accelerated cellular aging. 

 The evidence-linking stress and telomere short-
ening suggests that in fl ammation could be a com-
mon biological pathway  [  222  ] . In fact, higher levels 
of in fl ammation can activate T-cell proliferation, 
a process that in turn leads to shorter telomeres 
 [  223  ] . Chronic stress also increases oxidative stress 
 [  215  ] , which promotes telomere shortening during 
replication  [  223  ] . Because in fl ammation plays a 
role in cellular aging, it seems plausible that biologi-
cal, psychological, and psychosocial factors, as well 
as health behaviors, may affect telomere length. 

 Psychological factors like mood disorders and 
psychosocial factors such as negative childhood 
experiences are related to shorter telomeres. 
In a study comparing individuals with mood dis-
orders to healthy, age-matched controls, those 
with a diagnosed mood disorder had shorter 
telomeres  [  216  ] . Another study showed that 
patients with major depression had shorter telom-
eres compared to those without major depression 
 [  224  ] . Childhood maltreatment in young adults 
has been associated with shorter telomeres  [  225  ] . 
Older adults who experienced an adverse event 
during childhood had shorter telomeres and 
higher IL-6 levels than those who did not  [  226  ] . 
These  fi ndings suggest that mood disorders as 
well as negative events from childhood can have 
lasting effects on cellular aging. 

 Biological factors and some health behaviors 
can also modify telomere length. Aging has been 
associated with shorter telomeres  [  219,   227  ]  
Age-related telomere shortening has been linked 
to age-related diseases and mortality  [  228  ] . Obese 
women and smokers also have shorter telomeres 
 [  219,   227  ] . Less physically active participants 
had shorter telomeres than more physically active 
ones  [  229  ] . Therefore, factors that are known to 
increase in fl ammation also shorten telomere 

length. These data support the conclusion that 
in fl ammation may be a biological pathway link-
ing stress and cellular aging.   

    19.8   Conclusion 

 Understanding in fl ammation requires knowledge 
of multiple biological, psychological, and psycho-
social factors, as well as health behaviors. Higher 
proin fl ammatory cytokines are associated with 
aging, obesity, depression, anxiety, poor quality 
relationships, smoking, poor diet, exercise, and 
sleep habits. These factors independently impact 
in fl ammation but they can also coincide to have 
additive effects on in fl ammation. 

 Socioeconomic status provides an excellent 
example of how several factors converge to affect 
in fl ammation. Individuals with low SES are 
more likely to smoke, abuse alcohol, be seden-
tary, have poorer diets, sleep less, and experience 
more stress and depression  [  127  ] . The relation-
ship between low SES and poor health still exists 
despite statistically controlling for these negative 
factors, suggesting that the sum effect is greater 
than its parts. 

 Health behaviors may buffer these negative 
psychosocial factors and ameliorate harmful 
effects on in fl ammation. Increasing physical 
activity lowers proin fl ammatory mediators 
 [  177–  179  ] . Restorative yoga participation less-
ened in fl ammation in chronic heart failure 
patients  [  180  ] . Weight loss without increasing 
physical activity also lowered in fl ammation  [  67, 
  68,   71  ] . Smoking cessation appears to reduce 
elevated cytokines relatively quickly; however, 
CRP levels in former smokers may take 
10–20 years to drop to those of nonsmokers’ 
 [  154,   160,   161  ] . In addition, diets high in  fi ber 
and low in saturated fats are also associated with 
lower in fl ammation  [  190,   192  ] . 

 Because in fl ammation contributes to many 
chronic diseases such as cardiovascular disease 
and diabetes, controlling or reducing in fl ammation 
is important. Clearly individual characteristics 
including age and sex cannot be modi fi ed; 
however, helping individuals change their poor 
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behavioral habits and reducing in fl ammation 
may both extend longevity and increase the 
quality of life. 

 Taken together, in fl ammation is a transactional 
process; many factors can overlap and have addi-
tive effects. The observation that proin fl ammatory 
cytokines accelerate immune cell replication and 
cellular aging is a recent  fi nding, suggesting a 
new and exciting direction for further PNI-
focused research. Thus health research using a 
PNI lens will continue to pioneer novel and inte-
grative investigations into the factors that 
in fl uence the relationship between in fl ammation 
and disease.  

 Important information researchers should consider when 
studying in fl ammation: 

 • In fl ammation is the result of interactions among 
many biological pathways including the autonomic 
nervous system, hypothalamic–pituitary–adrenal 
axis, and the innate immune system 

 • Psychological stress induces proin fl ammatory 
cytokine release 

 • Psychosocial factors and health behaviors impact 
chronic in fl ammation through direct and indirect 
pathways 

 • Age is positively associated with in fl ammation 
 • In fl ammation is important for physical and psycho-

logical health; the pathway between the brain and the 
immune system is bidirectional 

 Important information clinicians should consider: 
 • In fl ammation is the result of interactions among 

many biological pathways including the autonomic 
nervous system, hypothalamic–pituitary–adrenal 
axis, and the innate immune system 

 • Controlling/reducing chronic in fl ammation is 
important for good physical and psychological health 

 • Although clinicians cannot change a patient’s sex, 
age, or SES, creating an action plan based on the 
patient’s needs could include 
 – Weight reduction 
 – Increasing exercise 
 – Making better nutritional choices 
 – Increasing hours slept at night 
 – Providing mental health referrals 
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